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ABSTRACT 

Diabetic retinopathy (DR) is one of the most common microvascular 

complications of diabetes. Early and accurate screening of DR from 

fundus images is crucial for the ophthalmologist to make treatment 

plans. In recent years, many deep learning-based methods have been 

proposed for medical image segmentation. However, the DR lesions 

segmentation still meets great challenges.  

In this work, we propose a novel cycle adaptive multi-target 

weighting network (CAMWNet) that mimics the biological vision 

system of the human brain. The network consists of two major parts: 

a novel adaptive multi-target weighting network (AMWNet) for DR 

lesions segmentation and a reverse data recovery network (RRN) to 

simulate the cycle perception in visual hierarchy. In addition, a novel 

joint loss function is designed to optimize the CAMWNet. 

Comprehensive experiments on Indian Diabetic Retinopathy Image 

Dataset (IDRiD) show that, CAMWNet achieves better performance 

than other state-of-the-art methods with accuracy, Dice similarity 

coefficients, sensitivity and specificity of 98.33%, 53.84%, 48.54% 

and 99.88%, respectively. 

Index Terms—Diabetic retinopathy, neural network, retinal 

fundus images, multi-target segmentation. 

1. INTRODUCTION

Diabetic retinopathy (DR) is a chronic eye disease depicted by the 

presence (see Fig. 1) of one or more retinal lesions like 

microaneurysms (MA), hemorrhages (HE), hard exudates (EX) and 

soft exudates (SE) [1]. DR is one of the main causes of blindness. 

However, more than 90% of blindness can be prevented by early 

diagnosis and treatment. Indeed, manual examinations take a long 

time and there are not enough experts to meet the growing demand 

for screening. Therefore, the development of the computer-aided 

automatic diagnostic system is crucial to the prevention and 

treatment of DR. 

At present, DR lesions segmentation is faced with the problem 

of scarce data and inter-class difference. Playout et al. [2] proposed 

a supervised learning approach that training multi-task network to 

enhance the generalization ability of deeply segmentation networks. 

When the lesion regions are scattered and small-scaled, Yan et al. 

[3] integrating the decoder of a global-level UNet and a patch-level

one to achieve better segmentation. Xue et al. [4] proposed a multi-

task segmentation method based on a hybrid dynamic membrane

system. After then, Sambyal et al. [5] proposed a modified UNet to

Fig. 1. Fundus photograph containing different retinal lesions 

associated with DR. (a) Microaneurysms (MA), (b) Soft Exudates 

(SE), (c) Hemorrhages (HE) and (d) Hard Exudates (EX). 

precisely define the boundary of the region of interest and improve 

the segmentation performance of MA and EX. In addition, Guo et 

al. [6] proposed a top-k loss algorithm based on class-imbalance and 

loss-imbalance to alleviate misclassification. Although these 

methods have achieved promising results in the segmentation of 

certain types of lesions, it is still a challenge to segment MA, HE, 

EX, SE and optic disc (OD) simultaneously due to diverse shape, 

blurred boundary, unclear pathological characteristics of lesions. 

Previous works have shown that task-optimized deep 

convolutional neural networks (CNN) are precise quantitative 

models of visual coding in primate visual cortex [7][8]. However, 

some structures of primate visual systems are not completely 

imitated by feed-forward CNN. By merging generative recurrent 

feedback, Huang et al. [9] enhance the consistency of the neural 

network. Their works show better adversarial robustness than the 

conventional feed forward CNN. Inspired by their works, we 

propose a novel cycle adaptive multi-target weighting network 

(CAMWNet). It mainly composed of a segmentation network and a 

reverse data recovery network (RRN). First, to alleviate the 

influence of background information in the fundus image, and to 

solve the problem of class-imbalance caused by the difference 

between retinopathy, a novel adaptive multi-target weighting 

network (AMWNet) is proposed as our segmentation network. To 

further improve the multi-target segmentation performance and the 

generality of the network, a U-shape network is designed and 

employed as our RRN to simulate feedback from the high-level 

visual hierarchy to the low-level. In addition, we develop a novel 

joint loss function to optimize CAMWNet. Finally, we conduct 

comprehensive experiments on Indian Diabetic Retinopathy Image 

Dataset (IDRiD) to evaluate the effectiveness of our proposed 

method. The experimental results show that, compared with other 

state-of-the-art methods, our proposed method has achieved 

outstanding performance in DR lesions segmentation task. 
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2. METHOD 

 

As shown in Fig. 2, the proposed CAMWNet consists of two major 

parts: an AMWNet for DR lesions segmentation and an RRN that 

aims to simulate feedback from the high-level visual hierarchy to the 

low-level. The fundus images are fed into AMWNet to predict the 

segmentation results and generate the target feature maps for 

recovering the data. Then, the target feature maps are fed into the 

RRN for restoration. Finally, a novel joint loss function is designed 

to optimize the network parameters end-to-end. 

 

2.1. Adaptive Multi-Target Weighting Network (AMWNet) 

 
It has been demonstrated that CNN can automatically learn rich 

feature information from the input images. However, due to the large 

inter-class differences in the DR lesions segmentation task, the class 

information of some targets will be weakened when decoded, which 

leads to the segmentation performance degradation. To solve these 

problems, we propose AMWNet for DR lesions segmentation. In 

this framework, weights are assigned adaptively to different targets 

by learning high-level global semantic information, so that the class 

imbalance problem can be solved. As shown in Fig. 2, AMWNet 

consists of three parts: encoder-path, decoder-path and our newly 

proposed adaptive multi-target weighting module (AMW). The 

encoder-path is used to extract rich semantic information and global 

features in the input image, and to down-sample the feature maps at 

different stages. The decoder-path aims to up-sample the feature 

maps with strong semantic information but weak resolution from 

higher-level stage. The features are fused with weak semantic but 

high-resolution information through skip-connection [10]. It has 

been demonstrated that the top features in the highest stage of CNN 

contain the strongest semantic information that is beneficial for 

classification. Therefore, to tackle the problem of class imbalance, 

AMW module is attached to the center stage to learn the semantic 

information and adaptively generate weights for different targets. 

The AMW module is constructed by three convolutional layers and 

two fully connection layers. In the AMW, the feature maps from top 

stage of encoder path 𝐗𝐻 will be encoded to a weight vector 𝐰 ∈
ℝ𝑁×1 corresponding to different targets as follows: 

𝐰 = 𝑔𝐴𝑀𝑊(𝐗𝐻) (1) 

where 𝑔𝐴𝑀𝑊(⋅)  represents AMW module, 𝑁  denotes the targets 

numbers (except background). Then, the weight vector is multiplied 

by the feature maps 𝐅 ∈ ℝ(𝑁+1)×𝐻×𝑊  from the final layer of 

decoder path to obtain the final prediction result: 

𝐅𝑐
𝑤 = 𝐅𝑐 × 𝑤𝑐       𝑐 = 1,2, … , 𝑁 (2) 

𝐘′(𝑥, 𝑦) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐

𝐅𝑐
𝑤(𝑥, 𝑦)      𝑐 = 0,1, … , 𝑁 (3) 

where 𝐅𝑐  and 𝑤𝑐  are the feature map and weights correspond to the 

𝑐-th target, respectively. 𝐅𝑐
𝑤  represents the weighted feature map 

corresponds to 𝑐 -th target and (𝑥, 𝑦)  represents the spatial 

coordinates in the feature maps. 𝐘′ is the final prediction result. 

 

2.2. Reverse Data Recovery Network (RRN) 

 

It has been proved in biology that human brain cognition is a cyclic 

perception process, which can associate the target domain with the 

source domain of the object, and vice versa. These findings have 

also been introduced into the design of computer vision algorithms, 

and achieved promising results [7][8]. Inspired by their works, a  

 

Fig. 2. An overview of the proposed cycle adaptive multi-target weighting 

network (CAMWNet). 

perception mechanism is introduced into our model and applied to 

the task of DR lesions segmentation, as shown in Fig. 2.  

The cycle perception system is constructed by introducing an 

RRN that aims to simulate feedback from the high-level visual 

hierarchy to the low-level. U-shape network is widely used in 

segmentation and data generation works [11] as its unique 

architecture. Therefore, we design a shallow U-shape network as our 

RRN for data recovery based on the features extracted by AMWNet: 

𝐗𝑅 = 𝑅𝑅𝑁(𝐅) (4) 

where 𝐗𝑅 is the recovered data obtained by RRN and 𝐅 is feature 

maps from the top of decoder-path. RRN is a part of the entire 

network and is jointly trained with AMWNet. With RRN, the 

semantic comprehension is further improved, which helps to 

improve the multi-task segmentation performance of DR lesions. 

 

2.3. Loss Function 

 

To further optimize the proposed model, we develop a novel joint 

loss for the proposed CAMWNet, as follows: 

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝑜𝑠𝑠𝐴𝑀𝑊 + 𝛽𝐿𝑜𝑠𝑠𝑅𝑅𝑁 (5) 

where 𝛼 and 𝛽 are hyper-parameters. In this paper, 𝛼 and 𝛽 are set 

as 0.6 and 0.1, respectively. 𝐿𝑜𝑠𝑠𝐴𝑀𝑊 is mainly used to balance the  

inter-class difference and to improve segmentation performance, 

while 𝐿𝑜𝑠𝑠𝑅𝑅𝑁  aims to improve the segmentation robustness by 

cyclic sensing mechanism. They are defined as follows: 

𝐿𝑜𝑠𝑠𝐴𝑀𝑊 = 𝐿𝐵𝐶𝐸(𝐘′, 𝐘) + 𝐿𝐷𝑖𝑐𝑒(𝐘′, 𝐘) (6) 

𝐿𝑜𝑠𝑠𝑅𝑅𝑁 = 𝐿𝑀𝑆𝐸(𝐗𝑅, 𝐗) (7) 

where 𝐘′  and 𝐘  are the segmentation results and ground truth, 

respectively. 𝐗𝑅  and 𝐗 represents the recovered data obtained by 

RRN and the corresponding original fundus images, respectively.  

 

3. EXPERIMENTAL RESULTS 

 

3.1 Data description and implementation details 

 

The dataset used in our experiments is the Indian Diabetic 

Retinopathy Image Dataset (IDRiD) [1], which is available for the 

segmentation and grading of the retinal image challenge hosted by 

ISBI (International Symposium on Biomedical Imaging) conference 

2018. IDRiD contains 81 images with a resolution of 4288 × 2848. 

Pixel-level annotations of EX, HE, MA, OD and SE are provided. 

Unlike the IDRiD challenge, we performed joint segmentation on 

the lesion above. We performed 4-fold cross validation both in  

1142

Authorized licensed use limited to: Soochow University. Downloaded on January 05,2022 at 03:03:26 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. DSC (%) of different networks on validation set. Bold numbers indicate the best performance. 

Method Mean DSC HE DSC EX DSC MA DSC SE DSC 

UNet 50.46±1.80 51.53±3.17 71.21±3.26 39.62±2.42 39.50±1.63 

CPFNet 34.44±4.37 37.08±4.50 61.22±4.50 8.45±5.72 31.01±9.60 

CE-Net 47.65±3.04 51.06±4.00 62.85±3.22 30.30±1.90 46.39±7.18 

AttUNet 42.11±4.49 49.97±4.93 70.38±1.83 32.22±18.71 15.86±16.36 

CAMWNet 53.84±2.36 52.73±5.44 71.41±2.48 38.13±3.29 53.11±3.08 

Table 2. More prediction results (%) of different networks on validation set. Bold numbers indicate the best performance. 

Method Mean DSC ACC SEN SEP JSC PC PCC 

UNet 50.46±1.80 98.19±0.27 47.68±3.53 99.85±0.03 35.71±1.92 60.19±0.86 52.16±1.76 

CPFNet 34.44±4.37 98.11±0.36 29.35±3.66 99.92±0.02 24.52±2.70 57.21±0.81 39.27±3.10 

CE-Net 47.65±3.04 98.23±0.38 43.40±1.18 99.86±0.04 32.49±2.31 57.52±4.86 48.77±2.74 

AttUNet 42.11±4.49 98.09±0.40 50.75±3.57 99.82±0.06 38.26±2.18 62.46±3.16 54.90±1.94 

CAMWNet 53.84±2.36 98.33±0.33 48.54±3.94 99.88±0.02 38.31±2.14 64.93±1.27 54.80±2.11 

ablation and contrast experiments. Except for the last batch with 21 

images, the other batches contained 20 images that were not 

repeated. To ensure that the receptive field is sufficient and to reduce 

the computation, the images are resized to 512 × 512. This input size 

will not lose much information compared with 256 × 256. 

The implementation of our proposed CAMWNet is based on 

the public platform Pytorch and NVIDIA Tesla K40 GPU with 

12GB memory. The Adam optimizer with a learning rate of 0.0005 

is adopted to optimize our model, and the batch size is set to 4. In 

addition, random vertical flipping was applied for data augmentation 

online. To be fair, all experiments adopt the same data preprocessing 

and training strategy. To verify the effectiveness of our proposed 

method, seven indicators, including Dice similarity coefficients 

(DSC), accuracy (ACC), sensitivity (SEN), specificity (SPE), 

Jaccard similarity coefficient (JSC), precision (PC), and Pearson’s 

correlation coefficient (PCC) are used to evaluate the performance. 

During the inference section, it takes only about 350ms and 

0.89GB GPU memory to output the prediction for a 512×512 image, 

which indicates that it is easy to deploy the CAMWNet. 

 

3.2 Results 

 

We compared the proposed CAMWNet with other state-of-the-art 

methods, including UNet [10], CPFNet [12], CE-Net [13] and 

AttUNet [14], as shown in Table 1 and 2. As a non-lesion area, OD 

is excluded when evaluating the performance. The numerical results 

show the superiority of our proposed CAMWNet. The Mean DSC 

of CAMWNet is 53.84%, and is 3.38% higher than the baseline. 

Although some of AttUNet’s performance is comparable to that of 

CAMWNet, it do badly in the segmentation of SE.  

In addition, it can be seen from Table 1 that compared with 

other methods, the DSC of SE obtained by CAMWNet has been 

significantly improved. As relatively fewer samples, the problem of 

class imbalance is aggravated in the lesion SE, and our proposed 

method can still well meet this challenge. 

To further demonstrate the effectiveness of the proposed 

method, the qualitative segmentation results are also given in Fig. 3. 

It can be seen that the CAMWNet is more accurate and has better 

robustness in the DR lesions segmentation task. 

 

3.3. Ablation Study 

 

To verify the validity of the proposed AMWNet and RRN, we also 

conduct ablation experiments. For convenience, we call the U-shape 

network as the baseline method. As shown in Table 3, AMWNet 

achieves substantial improvement over the baseline in terms of four 

targets, and results 53.43% Mean DSC. This outperforms the 

baseline with only a small computational increase. The addition of 

RRN also helps to improve the performance. Compared with the 

baseline, the Mean DSC increases 1.83%. Especially, our proposed 

AMW and RRN can be easily introduced into other encoder-decoder 

network, which is our near future work. Furthermore, the proposed 

CAMWNet achieves the highest Mean DSC, whose results further 

demonstrate the effectiveness of our proposed method. 

 

4. CONCLUSION 
 
In this work, we propose a novel cycle adaptive multi-target 

weighting network (CAMWNet) that mimics the biological vision 

system of the human brain. To tackle the problem of class imbalance 

and to further improve the segmentation performance, an adaptive 

multi-target weighting network is developed for DR lesions 

segmentation. Based on CAMWNet network architecture, a new 

joint loss function is proposed to optimize the network. The 

experiment results show that the proposed method achieves better 

performance than other state-of-the-art methods. 
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Table 3. Ablation study of multi-target segmentation on the IDRID. 

Method Mean DSC HE DSC EX DSC MA DSC SE DSC 

baseline 50.46±1.80 51.53±3.17 71.21±3.26 39.62±2.42 39.50±1.63 

AMWNet 53.43±1.42 52.97±2.97 71.44±2.43 39.17±1.61 50.14±2.16 

Baseline + RRN 52.29±1.97 51.74±3.02 71.25±2.31 39.02±2.12 47.15±2.88 

CAMWNet 53.84±2.36 52.73±5.44 71.41±2.48 38.13±3.29 53.11±3.08 

 

Fig. 3. Examples of segmentation. The red, green, blue, yellow, sky-blue regions represent hemorrhages (HE), hard exudates (EX), 

microaneurysms (MA), optic disc (OD) and soft exudates (SE) respectively. 
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